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Executive Summary and Abstract

Motivation. Large Language Models (LLMs) are rapidly extending their context windows—some
surpassing 100k tokens, others reaching 1–10 million. This demands storing hundreds of giga-
bytes of key–value (KV) cache data, far exceeding typical GPU memory (16–80 GB, up to
160 GB on newer devices). Traditional partitioning or CPU-hosted caching struggles to handle
the overhead at scale.
Solution: PagedAttention over RDMA (PAoR). PagedAttention Over RDMA offloads
cold KV data to NVMe or distributed filesystems, using zero-copy datapaths like GPUDi-
rect Storage. Open source software in inference servers, intercepts KV pages and seamlessly
merges NVMe into GPU memory space. With GPU assembly-level optimization (to main-
tain ILP/MLP), multi-hundred-GB or TB-scale caches become feasible on a small set of GPUs.

• Up to 75× speedup on multi-step TTFT at large token counts.

• 25%–7,528.53% more tokens/second.

• ROI savings: e.g. $111 million on a 10,000-GPU cluster.

Long-Term Outlook. As context length outstrips GPU memory growth (Rasmusson’s Single
Prompt AI Scaling Law), external KV paging is inevitable. We focus on design and implemen-
tation of GPU assembly accurate (measured in Cycles Per Instruction) PagedAttention Over
RDMA for exascale LLM inference.

1 Introduction and Motivation

Recent breakthroughs in Large Language Models (LLMs) hinge on extending context windows.
Where GPT-2 had 1k tokens, current models easily approach 100k–1M tokens, with some early
forms claiming 10M. For each token, a Transformer stores a key and a value vector, typically
at FP16 (2 bytes per element). This key–value (KV) cache grows linearly with sequence length,
and can exceed 200 GB for multi-million-token contexts. Since GPU on-board memory rarely
surpasses 160 GB, we require a mechanism to page out cold KV data.
PagedAttention over RDMA addresses this by leveraging Remote Direct Memory Access to
stream these KV pages between GPU memory and NVMe. Meanwhile, to preserve performance,
GPU assembly-level scheduling must hide external I/O latencies by maintaining ILP (instruction-
level parallelism) and MLP (memory-level parallelism).

This paper covers how we address GPU and LLM memory limitations via:
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• Why Transformer KV caches outgrow GPU memory,

• How PagedAttention Over RDMA can solve it,

• GPU assembly considerations (latency, concurrency),

• Multi-step TTFT benchmarks,

• Long-term scaling laws and ROI implications.

2 Why KV Cache Becomes the Bottleneck

In a Transformer-based LLM, each token has a key vector and a value vector, each dimensioned
dmodel. For FP16, each float is 2 bytes. Thus:

KV size (bytes) = Ntok × dmodel × 2 × s, (1)

where Ntok is the token count, dmodel the hidden dimension, the factor of 2 accounts for both
key and value, and s = 2 (bytes per element for FP16). For instance, a dimension dmodel ≈ 5120
and Ntok = 10M tokens yields ∼ 205GB. A single GPU with ≤ 160GB HBM cannot hold that
entire KV cache.

3 PagedAttention Over RDMA (PAoR) Architecture

3.1 PagedAttention Over RDMA: Concept Overview

1. RDMA datapath avoids CPU overhead for GPU <-> NVMe transfers,

2. Hot/cold page prioritization, offloading seldom-accessed (cold) tokens,

3. Global index ensures that any GPU can fetch needed pages quickly.

This approach effectively adds an extra “tier” of memory beyond on-board HBM.

4 GPU Instruction Latency and Parallelism

Even if external KV paging solves the memory capacity problem, the performance problem
remains unless we carefully manage GPU pipelines. Modern NVIDIA architectures like Ampere
(A100) or Hopper (H100) can sustain extremely high FLOPS, but memory access latencies can
approach hundreds of cycles—especially if the data is not in on-board caches.

4.1 Instruction Latency in Ampere/Hopper

Prior microbenchmarking (e.g. [3, 4]) reveals:

• Integer ALU Ops: Latency can be as low as 2 cycles if there are no chain dependencies.
However, multiple dependent integer instructions can inflate the effective latency to 6–8
cycles or more, depending on warp scheduling.

• Floating-Point Ops: FP32 often 2–4 cycles, FP64 can be 8 or more, though Ampere
devices include improved FP64 throughput relative to earlier generations.

• Memory Ops (On-GPU): Accessing L1 or L2 caches can be tens of cycles (30–200),
while direct global memory (HBM) is typically around 300–800 cycles of latency. The
GPU’s warp scheduler attempts to hide this by switching to other warps that are ready to
execute.
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• Tensor Cores (WMMA/IMMA): Specialized instructions with varying latencies de-
pending on matrix shape, data type (FP16, BF16, TF32, etc.), and warp occupancy.
Ampere improved warp-matrix multiply-accumulate concurrency, but dependency chains
can still stall the pipeline if not carefully orchestrated.

4.2 Memory-Level Parallelism (MLP) and Instruction-Level Parallelism (ILP)

ILP ensures multiple instructions can be in flight, overlapping each other within a single warp.
MLP ensures multiple memory requests can be outstanding concurrently, preventing the GPU
from idling while waiting on a single fetch.

When external paged data is fetched, latencies are even higher—microseconds or more. The
warp scheduler can hide this only if:

1. There are enough parallel warps or thread blocks that do not depend on the slow fetch,

2. Or the data is requested early enough (prefetching) that it arrives by the time it’s needed.

4.3 Assembly-Level Scheduling & Paging Integration

Some advanced kernels insert “micro-timers” in SASS or PTX to measure the time from page-
request issuance to completion. This provides real-time feedback to the caching/prefetch logic.
For instance:

• Adaptive Prefetch Window: If measured latencies increase, we request pages earlier
to avoid pipeline stalls.

• Batching vs. Splitting: If NVMe or RDMA is more efficient at large sequential I/O,
we coalesce multiple small fetches. Otherwise, we may do smaller partial reads to reduce
burst load.

• Warp-based Overlap: A warp waiting for external data can yield to another warp that
is ready, provided the scheduler has enough concurrency.

4.4 Impact of High Latency on Kernel Performance

Without carefully overlapping fetches, external KV paging can stall the entire kernel. If context
windows are huge (hundreds of thousands or millions of tokens), the model might need frequent
references to older tokens. Hence, scheduling must be mindful of real-time GPU microarchitec-
ture details:

• Warp Dependency Graphs: identify which instructions can proceed while other warps
wait for data.

• Cache Eviction Patterns: ensure hot data remains on GPU to avoid repeated thrashing.

• NVMe Queue Depth Tuning: keep enough I/O operations in flight so the disk or SSD
doesn’t starve, but avoid saturating RDMA links that might cause QoS throttling.

4.5 Example: Overlapping a Remote KV Fetch with Tensor Core Ops

An LLM forward pass often includes a matrix multiply or attention block. While one portion
of the warp is engaged in a compute-heavy step, the paging logic can asynchronously fetch the
next chunk of KV data. By the time the next attention head or token step occurs, the data must
be in either GPU’s shared memory, L2, L1, or ld/st registers or the kernel will stall. Achieving
near-zero wait time requires precise orchestration of memory requests around the GPU’s pipeline.
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5 Multi-Step PAoR-ON vs. PAoR-OFF Benchmark (TTFT)

All tests were conducted on an NVIDIA DGX H100 system with these specifications:

• GPU: 8x NVIDIA H100 Tensor Core GPUs (640 GB total GPU memory)

• NVIDIA NVSwitch: 4x

• CPU: Dual Intel Xeon Platinum 8480C, 112 cores total, up to 3.80 GHz

• Networking: 4x OSFP ports for up to 400 Gb/s RoCE/InfiniBand, plus additional
ConnectX-7 NICs

• Software: DGX OS, CUDA 12.6, TensorRT-LLM v0.20.0rc0

We ran two sets of multi-step TTFT (time-to-first-token) benchmarks on this DGX H100:

• Section 5.1: Model Evaluation with Llama-3.1-70B (FP16 quantization)

• Section 5.2: Model Evaluation with Llama-3.1-70B (FP8 quantization)

In both cases, we compare “PAoR-ON” versus “PAoR-OFF” on turn 2 at various token counts.
The % difference is computed as

% diff =
(OFF - ON)

ON
× 100.

5.1 5.1 Model Evaluation: (Llama-3.1-70B, FP16 quantization)

Table 1 contains the updated benchmark results for Llama-3.1-70B at FP16, using step sizes [50,
1000, 2000, 8000, 16000, 24000, 32000, 64000, 96000, 128000] tokens. Gains of up to 7528.53%
appear at 128k tokens (∼ 75.3× faster).

Tokens PAoR-ON t1 PAoR-ON t2 PAoR-OFF t1 PAoR-OFF t2 % diff (t2)
50 36.894 25.328 29.081 27.925 10.25

1000 165.612 25.538 166.805 165.260 547.12
2000 305.454 29.350 304.692 304.856 938.69
8000 1189.103 38.787 1199.765 1199.311 2992.03

16000 2394.289 54.519 2410.260 2412.058 4324.28
24000 3612.110 61.598 3652.862 3648.305 5822.81
32000 4893.061 88.661 4931.505 4934.670 5465.75
64000 10288.430 157.749 10360.978 10369.098 6473.17
96000 16256.742 214.237 16304.672 16312.039 7514.03

128000 22981.840 301.481 22994.476 22998.583 7528.53

Table 1: FP16 test, PAoR-ON vs. PAoR-OFF Turn2 Times. Gains up to 7528.53% at
128k tokens.

FP16 Test Graph. Figure 1 plots turn2 times for PAoR-ON vs. PAoR-OFF, plus the FP16
KV cache size on a second y-axis. Recall the formula:

KV_Size (bytes) = Ntok × dmodel × 2× 2,

with dmodel = 8192.
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Figure 1: PAoR drastically reduces turn2 latency for FP16 test; largest improvement is 7528.53%
at 128k tokens.

5.2 5.2 Model Evaluation: (Llama-3.1-70B, FP8 quantization)

We also ran an FP8 version of Llama-3.1-70B with the same step sizes [50, 1000, 2000, 8000,
16000, 24000, 32000, 64000, 96000, 128000]. The updated results appear in Table 2, with percent
differences up to 2984.65% at 128k tokens.

Tokens PAoR-ON t1 PAoR-ON t2 PAoR-OFF t1 PAoR-OFF t2 % diff (t2)
50 39.439 22.308 43.725 29.327 31.47

1000 58.850 28.046 56.905 56.246 100.55
2000 97.152 24.662 95.072 95.206 286.05
8000 317.714 37.862 316.145 316.258 735.30

16000 641.439 51.424 633.103 634.030 1132.96
24000 1007.591 69.586 984.308 983.485 1313.34
32000 1367.059 97.098 1371.541 1381.308 1322.60
64000 3156.745 145.569 3143.190 3149.996 2063.92
96000 5290.473 224.575 5277.509 5279.433 2250.86

128000 7860.608 254.781 7846.349 7859.110 2984.65

Table 2: FP8 test, PAoR-ON vs. PAoR-OFF Turn2 Times. Gains up to 2984.65% at
128k tokens.

For FP8 key–value storage, each float is effectively 1 byte, so the formula is:

KV_Size (bytes) = Ntok × dmodel × 2× 1.

Below, we show the updated graph (Figure 2), with turn2 times on the left y-axis and KV cache
size (GB) on the right y-axis.
Overall, PAoR-ON significantly outperforms PAoR-OFF when context windows grow large,
saving thousands of percentage points in turn2 time by offloading cold KV data. Even at
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Figure 2: PAoR vs. no-paging at FP8 precision (DGX H100). Large speedups at high token
counts, up to 2984.65%.

smaller token counts, the overhead is minimal.

6 ROI Example: 10,000 GPU Cluster

For large-scale HPC or hyperscalers, a 10,000-GPU deployment at $37k each costs $370 million.
If PagedAttention or PAoR yields a 30% efficiency gain, only 7,000 GPUs may be needed to
achieve the same throughput, saving $111million. Freed GPUs can be reassigned or omitted
entirely, drastically improving ROI and TCO.

7 Future Projections: Rasmusson’s Scaling Law and Historical
Data

7.1 Context Growth vs. GPU Memory

Empirically, LLM context length has doubled every 1–2 years, from GPT-1’s 512 tokens in 2018
to 10 million tokens for certain 2025 prototypes. Meanwhile, GPU on-board memory typically
doubles only every 2–3 generations. This mismatch leads to:

∆(t) =
Z(t)

G(t)
∝ 2

(
1
τ
− 1

β

)
(t−t0)

,

where τ is the context doubling period, β is the GPU memory doubling period, and τ < β. Over
time, ∆(t) grows exponentially, forcing external paging.
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7.2 Historical Data (2018–2025) for GPU Memory vs. LLM KV Cache

We can illustrate the real-world mismatch by focusing on maximum context lengths actually
observed from GPT-1 to GPT-4.1, Claude, Llama, etc. For demonstration, assume a single
fixed dmodel = 8192 and FP16. Then,

KV Cache Size (GB) =
Ntok × dmodel × 2 × 2 (bytes)

109
.

Table 3 lists approximate historical data from 2018–2025, plus an estimate for GPU on-board
memory that was typical or near state-of-the-art in each year:

Year Representative Model Max Context KV (GB) Approx. GPU Mem (GB)
2018 GPT-1 512 0.017 16
2019 GPT-2 1024 0.034 16
2020 GPT-3 2048 0.067 32
2021 (late GPT-3, others) 4096 0.134 32
2022 ChatGPT (3.5 base) 4096 0.134 40
2023 GPT-4 Turbo (128k), Claude 100k 128,000 4.2949 80
2024 Claude 2.1, Llama 3 (2M) 2,000,000 64 120
2025 Gemini-Pro, Llama 4 Scout (10M) 10,000,000 205 160

Table 3: Historical (2018–2025) GPU memory vs. LLM KV cache for largest public context sizes.
KV usage assumes dmodel = 8192 at FP16.

Combined Log-Scale Plot. We can visualize these points in a single chart:
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Figure 3: Historical (2018–2025) GPU memory vs. LLM KV cache for largest released context
sizes each year. KV usage assumes dmodel = 8192 at FP16.

Observations:

1. In 2018–2019, a mere 0.034 GB KV could fit easily on a 16 GB GPU.
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Figure 4: Log-scale context growth from 512 tokens to 10 million tokens in about 7 years.

2. By 2023 (128k tokens), the KV usage jumped to 4.3 GB—still under 80 GB, but signifi-
cantly larger.

3. By 2025 (10M tokens), 205 GB is well beyond 160 GB, forcing external KV paging.

As context windows keep climbing, PagedAttention Over RDMA or PAoR becomes
mandatory to handle multi-hundred-GB KV caches.

8 The “Law of Accelerating Returns” (Moore’s Law) for AI

Large language models can only consider a limited amount of text at one time when generating
a response or prediction. This is called the context length. It differs across models. But one
trend is clear: context length is increasing at an accelerating rate.

Historically, just considering some OpenAI and Facebook models:

• GPT-1 (2018): 512 tokens

• GPT-2 (2019): 1,024 tokens

• GPT-3 (2020): 2,048 tokens

• GPT-3.5 (2022): 4,096 tokens

• GPT-4 (2023): 8,192 tokens initially, then 16,384, then 32,768, and recently up to 128,000
tokens

• Llama-4 (2025): 10,000,000 tokens

On average, context length has roughly doubled every year for the last five years. This
growth is reminiscent of Moore’s Law in semiconductors, prompting speculation that:

The maximum context length of state-of-the-art LLMs doubles every one to two years.
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Yet scaling context length is not trivial. Early attention mechanisms were quadratic in
complexity, making large context windows prohibitively expensive. Innovations like FlashAt-
tention have helped reduce complexity, and Rotary Positional Encoding (RoPE) improves
model generalization to longer windows. Additionally, fine-tuning a base model (like Llama 2)
to a higher context (16k, 32k, etc.) can work around the lack of long-sequence data in typical
corpora. These architectural and algorithmic advances are pushing context lengths to where
multiple combined volumes of books (for instance 38 of the longest volumes of text combined
in Project Gutenberg is equal to roughly 10,000,000 tokens), full codebases, or even multi-GB
legal repositories can be processed in a single prompt.

The practical barrier: memory. When the context length extends into the 100k+ token
regime, the KV cache alone can exceed ∼ 200GB. Going beyond that (1M or 10M tokens) often
saturates or thrashes HBM across even the largest GPUs. Without a mechanism like PAoR,
attempting to hold multi-hundred-gigabyte contexts on GPU quickly becomes impossible.

The future: With new attention mechanisms, better data, and improved hardware, some
foresee near-exponential growth in context length—ultimately reaching a point where all human
knowledge could be loaded into a single prompt. But until GPU memory itself catches up,
PagedAttention over RDMA may be one of the keys to unlocking that future.

9 Conclusion

PAoR removes memory as the primary bottleneck for long–context inference, unlocking richer
conversational experiences and faster iteration cycles. Shipping as a fully supported feature of
the PagedAttention over RDMA allows customers to redeploy—or avoid purchasing—thousands
of GPUs, translating directly into nine-figure savings at scale. As AI rides a “Moore’s Law” of
context window growth, PAoR’s transparent KV caching may prove essential for enabling the
next generation of hyper-long inference tasks. Extremely long context windows are now normal
in modern LLMs, but GPU on-board memory has not kept up. PagedAttention Over RDMA
or PAoR elegantly solves the capacity mismatch by transparently offloading cold KV data to
NVMe. Benchmarks confirm up to 69× speedup as context length scales. An ROI example shows
that 30% efficiency gains can slash GPU demand in large clusters, saving tens or hundreds of
millions of dollars.

Crucially, achieving these gains requires GPU assembly-level scheduling to preserve
ILP and MLP. By carefully orchestrating external page fetches with ongoing computations, we
can avoid pipeline stalls. This synergy of advanced caching (PAoR) and careful GPU parallelism
(ILP/MLP) extends feasible context windows into the millions or beyond. As Rasmusson’s Law
indicates, context is outpacing memory expansions—making external KV paging an essential
part of next-generation LLM inference.

10 Uses

Here are some carefully considered uses of extremely long input token context as single prompt
context length grows exponentially.

1. All Books (Ever Written)

(a) Universal Literary Critique: Identify undiscovered genres by analyzing stylistic trends
from ancient texts to modern bestsellers.

(b) Comparative Mythology: Find thematic overlaps across religious or mythological texts
spanning centuries.
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(c) All-Time Translation Index: Provide consistent cross-language translations for every
published work.

(d) Plagiarism Hyper-Search: Detect any instance of verbatim or near-verbatim copying
across the entire published record.

(e) Archetype Evolution: Examine how character archetypes change over historical peri-
ods (e.g. the “hero’s journey”).

(f) Quantum-Scale Citation Mapping: Trace references between academic textbooks and
footnotes to discover hidden historical influences.

(g) Lexical Diversity Over Time: Chart the ebb and flow of vocabulary, from Shake-
spearean English to modern slang.

(h) Global Reading List Summaries: Generate short synopses for every book in an instant,
grouped by region or era.

(i) All-Book Knowledge Graph: Link characters, events, places from every novel into a
universal fictional “super-verse.”

2. All Code (Ever Written)

(a) Global Vulnerability Scan: Search every repository for newly disclosed exploits, from
mainframes to modern apps.

(b) Historical Tech Stack Analysis: Pinpoint how languages and frameworks rose/fell
over time across millions of codebases.

(c) Auto-Refactoring Engine: Rewrite legacy code (e.g., COBOL) into modern languages
with full correctness checks.

(d) One-Pass De-Duplication: Eliminate near-identical code segments repeated across
billions of lines of code.

(e) Syntax Evolution: Compare concurrency primitives from 1960s assembly code to
2020s Rust or Go.

(f) Universal Library Index: Summarize or cross-reference all known libraries, frame-
works, and their interdependencies.

(g) Machine-Generated Patent Check: Spot code that might violate software patents by
matching code patterns to known claims.

(h) Bug Triaging at Scale: Identify related known issues across different open-source and
closed-source projects.

(i) Coding Style Harmonization: Enforce a single style guide across every piece of code
worldwide.

(j) Global Code Complexity Map: Rank files, repos, or modules by cyclomatic complexity
or maintainability index.

3. All Webpages on the Internet Archive

(a) Historic Trendline of Memes: Track the origin and diffusion of internet memes from
the earliest references.

(b) Censorship Analysis: Compare which pages disappeared or changed under govern-
ment or corporate pressure.

(c) Link Graph Reconstruct: Rebuild the entire link graph of the web at any given date,
analyzing the structure of hyperlinks.

(d) Semantic Evolution: See how the meaning or usage of certain terms changed, e.g.
“cloud computing” from 2000 to 2020.
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(e) Longitudinal Brand Tracking: Follow brand identity over time by analyzing corporate
websites and marketing language.

(f) Malware & Phishing Patterns: Trace the rise of malicious websites or phishing cam-
paigns historically, identifying new anomalies.

(g) Web Aesthetics Time Capsule: Summarize design trends (color palettes, layouts) each
year from 1995 to now.

(h) Archived Global News Analysis: Compare coverage of major events across thousands
of newspapers or blogs.

4. All Email Messages Ever Sent

(a) Global Collaborative Graph: Map out how ideas spread between companies, universi-
ties, and governments via email.

(b) Historical Corporate M&A Info: See how negotiations and deals formed in email
threads across decades.

(c) Multi-Organization Conflict Traces: Analyze misunderstandings or conflicts where
parties used email as the primary channel.

(d) Universal Contact Discovery: Identify hidden associations across social, professional,
or personal spheres.

(e) Sentiment Tracking at Scale: Chart global mood shifts by analyzing subject lines or
frequent keywords.

(f) Real-Time Threat Detection: Spot spam or phishing waves earlier by scanning billions
of messages at once.

(g) Language & Politeness Trends: Compare how formal or casual email styles changed
by region or decade.

(h) Company-Wide Knowledge Summaries: Summarize important historical email threads
for new employees or acquisitions.

(i) Auto-Translation of Entire Archives: Convert all emails from one language to another
in a single operation.

(j) Deep Relationship Mining: Reveal partnership or friendship networks based on con-
sistent co-communication patterns.

5. All Transcribed Audio

(a) Global Podcast Summaries: Generate one database of every topic ever discussed in a
podcast.

(b) Talk Show Trend Analysis: Compare how talk shows or radio segments framed polit-
ical or cultural issues historically.

(c) Call Center Persona Insights: Cluster call center agents by style or approach, linking
it to outcomes.

(d) Cross-Reference With Video Subtitles: Merge audio transcripts with video metadata
to locate relevant segments instantly.

(e) Audio-based Knowledge Graph: Link references, people, and topics across hundreds
of millions of broadcast hours.

(f) Emotion Over Time: Assess overall emotional tone in historical radio archives (e.g.,
from WWII era vs. modern times).

(g) Privacy Filter Training: Build advanced filters to detect sensitive private info in
real-time from large speech corpora.
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(h) AI Voice Imitation Counter-Measures: Identify patterns in transcribed calls that
might indicate AI voice spoofing.

6. All Data in All Datacenters

(a) Unified Finance Analytics: Real-time scanning of trillions of financial transactions
for fraud or risk patterns.

(b) Instant Data Warehouse Integration: Merge all corporate data silos in seconds, gen-
erating consistent master records.

(c) Global Supply Chain Insights: Track every product from raw material to consumer,
across the entire world’s datacenters.

(d) Omniscient Log Analysis: Correlate operational logs from any service or application
to preempt large-scale outages.

(e) Healthcare Megastudy: Combine patient records, clinical trials, and insurance data
for personalized medicine breakthroughs.

(f) One-Shot Data Migration: Transfer or unify entire corporate data systems with au-
tomated schema transformations.

(g) AI-Driven Cloud Orchestration: Dynamically re-balance load or resource allocations
across all datacenters based on usage patterns.

(h) Real-time Global KPI Monitor: Summarize top-level performance metrics for any
enterprise at any moment.

(i) Historical Data Footprints: Evaluate how data usage and storage has exploded over
decades to forecast future capacity needs.

(j) Cross-Domain Analytics: Instantly fuse R&D data from multiple fields (eg: biotech,
finance, agriculture, and more) to enable cross-disciplinary breakthroughs in science
and technology.

7. All Social Media Posts

(a) Viral Trend Prediction: Spot the next big meme or cultural fad days or weeks before
it peaks.

(b) Early Misinformation Flags: Identify major false narratives or manipulated media at
the earliest possible stage.

(c) Regional Sentiment Heatmap: Create a dynamic map showing how public sentiment
changes in real time across continents.

(d) Longitudinal Hashtag Evolution: Track how hashtags come in and out of vogue,
bridging them to real-world events.

(e) Cross-Platform Identity Matching: Find user aliases across different social networks
for a 360° view of online presence.

(f) Network Centrality Shifts: Identify emerging influencers or “super nodes” who shape
discourse drastically.

(g) Trend-Specific Summaries: Summarize every post about a new product or event in
minutes, providing real-time feedback.

(h) Multi-lingual Sentiment Analysis: Compare how global communities perceive an issue
in tens of languages simultaneously.

(i) User Lifecycle Insights: Understand how an individual’s posting style evolves over
years or across personal events.

8. All Messages Sent Between People
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(a) Total Communication Graph: Build a universal map of direct communications (SMS,
chat, DMs) for analyzing relationships.

(b) Discovery for Legal/Compliance: Instantly retrieve any relevant conversation across
billions of private channels for audits.

(c) Evolution of Language Patterns: Observe how slang, idioms, or punctuation spread
virally across friend groups.

(d) Sentiment-Driven “Temperature Checks”: Gauge how large populations feel about
urgent topics in private messages.

(e) Longitudinal Friendship Graph: Track how closeness between individuals evolves over
a lifetime of messages.

(f) Automated Summaries for Entire Org Chats: Summarize essential highlights daily
for a multi-department corporation.

(g) Inter-Culture Linguistic Comparison: Compare emoticons, abbreviations, or humor
types across different regions.

(h) Alerting for Illegal Activity: Flag patterns at scale in real-time that strongly correlate
with serious crimes, conspiracies, or foreign interference so networks can be disrupted.

9. All Human Metadata (Places, Transactions, Conversations)

(a) Global Movement Mapping: Reconstruct how billions of people moved through cities
or across borders, day by day.

(b) Transaction Flow Analysis: Pinpoint anomalies or suspicious flows of money across
thousands of banks in real time.

(c) Automated City Planning: Use aggregated travel patterns to design optimal public
transport expansions or highways.

(d) Privacy-Safe Personal Assistant: Summarize your entire life’s metadata, giving daily
suggestions or reminders.

(e) Synthetic Social Simulations: Predict hypothetical outcomes if a city or country
changed certain laws or infrastructure.

(f) Universal Crime Analysis: Cross-reference location and transaction data with known
criminal events to find suspect correlations.

10. All Known Metallurgy & Materials Science

(a) Universal Alloy Analyzer: Compare mechanical, thermal, and chemical properties
across every documented alloy or composite.

(b) New Material Discovery: Propose novel compositions by referencing untried permu-
tations from archived research.

(c) Failure Mode Classification: Identify root causes of fracturing or corrosion using
cross-industry data on material stress tests.

(d) Historical Metals Evolution: Trace the shifting usage of steel, iron, aluminum, etc.,
from industrial revolutions to modern aerospace.

(e) Recyclability Index: Rate materials by ease of recycling, linking to known processes
and real-world efficiency data.

(f) Property-Driven Design: For a desired property (e.g. elasticity, superconductivity),
find candidate formulas from a universal dataset.

(g) Cross-Industry Material Substitution: Suggest alternative materials for automotive
parts, buildings, electronics, etc. to reduce cost or weight.

13



(h) Composite Material Genome: Build a large-scale knowledge graph linking fiber, resin,
polymer data, analyzing synergy effects.

(i) Thermodynamic Synthesis Pathways: Optimize manufacturing steps by referencing a
century of lab/industrial conditions.

(j) Lightweighting / Crash Analysis: Evaluate how advanced alloys can reduce weight
while retaining structural integrity in vehicles.

11. All Known Physics

(a) Historical Experiment Database: Summarize thousands of prior experiments to iden-
tify overlooked results that might prompt breakthroughs.

(b) Particle Interaction Patterns: Cross-reference all scattering experiments or collider
data for anomalies hinting at new particles.

(c) Astrophysics Synthesis: Combine cosmic microwave background data with gravita-
tional wave signals for deeper cosmological insights.

(d) Reproducibility Checker: Validate experimental claims from older physics literature
by referencing modern replications or contradictory data.

(e) Multidimensional Simulator: Provide real-time simulation parameters for advanced
nuclear or plasma physics systems.

(f) Applied Physics Solutions: Provide direct engineering parameters for satellites, reac-
tors, or advanced energy systems.

(g) Grand Unified Repository: Build a single knowledge base linking every subfield (op-
tics, acoustics, quantum field theory, etc.).

(h) Single Query Unification: Attempt to unify quantum mechanics and general relativity
by analyzing every theoretical paper.

12. All Known Neuroscience

(a) Brain Region Mapping: Correlate thousands of fMRI studies, lesion reports, and
connectomes into a unified functional map.

(b) Neural Pathway Comparisons: Identify subtle differences in synaptic patterns across
species or across individuals with certain conditions.

(c) Pharmacological Mechanism Synthesis: Merge all known drug-neuron interactions to
propose new treatments for mental health.

(d) Brain-Inspired Architecture: Translate neuroscientific insights into advanced neural
network or hardware designs.

(e) Longitudinal Cognitive Studies: Analyze decades of data from large cohorts for early
signs of Alzheimer’s or Parkinson’s.

(f) Neuroplasticity Patterns: Summarize conditions under which adult brains show sig-
nificant rewiring or compensation.

(g) Developmental Neuroscience Database: Compare childhood brain growth timelines
across millions of subjects globally.

(h) Neuroethics Dashboard: Identify emerging ethical concerns around brain stimulation
or neural data privacy.

(i) Evolutionary Brain Changes: Trace how the brain’s structure diverged from early
hominids to modern humans.

(j) Cognitive Phenotype Clustering: Link behavioral or psychological phenotypes with
known structural or genetic correlates.
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13. All Known Chemistry & Biology

(a) Protein Folding Universe: Integrate every known protein structure or folding simu-
lation for new enzyme or drug design.

(b) Global Biodiversity Index: Summarize taxonomy, genetics, and observed behaviors
for every documented organism.

(c) Chemical Reaction Simulator: Suggest reaction conditions for thousands of new
molecules by referencing known reaction databases.

(d) Rare Element Processing: Identify novel approaches for refining or recovering precious
metals from industrial waste streams.

(e) Bio-Nano Convergence: Explore synergy between nanotechnology designs and bio-
logical systems for advanced biosensors.

(f) Antibiotic Resistance Sweep: Track the spread of resistant genes globally, proposing
novel interventions.

(g) Living Material Engineering: Combine knowledge of chemical reactions and synthetic
biology to design living “smart” materials.

14. All Known Electrical Engineering

(a) Universal Circuit Encyclopædia: Summarize schematics for every known circuit de-
sign from vacuum tubes to modern microchips.

(b) Component Substitution Finder: Suggest alternate parts or designs that meet the
same specs at lower cost or higher reliability.

(c) Transient Fault Analysis: Compare millions of debug logs from circuit boards to
pinpoint subtle manufacturing or design flaws.

(d) Cross-Discipline Consolidation: Link advanced power systems, radio frequency de-
signs, and digital logic under one knowledge graph.

(e) Signal Integrity Meta-Analysis: Propose best practices to minimize electromagnetic
interference, referencing all known test results.

(f) IoT Security Hardening: Identify known vulnerabilities or cryptographic best prac-
tices for embedded systems from aggregator data.

(g) Historical Evolution of Standards: Summarize how IEEE or ISO standards emerged
or changed over decades.

(h) Automatic Circuit Layouts: Generate robust circuit board designs in seconds by
referencing an entire library of proven patterns.

(i) Extreme Environment Electronics: Suggest designs or materials for electronics to
operate in harsh conditions (e.g., space, deep ocean).

(j) Interdisciplinary Co-Design: Merge mechanical, thermal, and software constraints to
produce holistic engineering solutions.

15. All Orbital Imaging Data

(a) Disaster Prediction & Response: Identify early warning signs of earthquakes, hurri-
canes, or floods from subtle changes in terrain or water levels.

(b) Military & Security Monitoring: Provide near-constant surveillance of conflict zones
or strategic sites (with major ethical concerns).

(c) Geo-Resource Exploration: Locate promising new mineral deposits or petroleum
reservoirs from spectral analysis.
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(d) High-Resolution Archaeology: Find lost ruins or hidden structures from patterns in
vegetation or topography changes.

(e) Space Debris Tracking: Aggregate all known orbital objects, predicting collisions or
near misses more accurately.

(f) Agriculture Optimization: Suggest micro-level irrigation or crop rotation plans based
on satellite NDVI (Normalized Difference Vegetation Index) data.

16. All Human Information Ever Created (Superset of Everything Else)

(a) Omniscient Knowledge Query: Ask any question spanning science, culture, history,
personal data—everything is in context.

(b) Seamless Language Mastery: Instantly translate or interpret any written, spoken,
coded, or symbolic language in existence.

(c) One-Prompt “God Mode” Debugging: Combine every piece of code, book, and user-
generated discussion to solve near-impossible bugs.

(d) Instant Education: Produce per-student curated, multi-format lessons on any subject,
referencing all existing knowledge simultaneously.

(e) Unbounded Personalization: Craft personalized solutions or content for each individ-
ual, referencing all global data available.

(f) Single-Prompt Emergent “Super-Intelligence”: Potentially unify all domains of knowl-
edge and provide answers to life the universe and everything (answer 42).

A Appendix: KV Derivation and Additional Equations

A.1 KV Cache Sizing Formula

Equation (1) encapsulates the standard Transformer design: each token yields a key vector and
value vector (factor of 2) at FP16 (another factor of 2 for bytes/element). Formally,

KV size (bytes) = Ntok × dmodel × 2× 2.

Once Ntok hits millions or billions, the total easily reaches hundreds of GB or TBs, beyond any
single GPU’s HBM capacity. Tools like PAoR or PagedAttention Over RDMA circumvent
that limit by treating NVMe as a memory tier.
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